

Error Resilient Internet Video Transmission

Ciro A. Noronha, Ph.D. Director of Technology, Compression Systems **Cobalt Digital** Juliana W. Noronha University of California, Davis

- over IP.
- Low-cost contribution links!!

Motivation • There are a number of protocols in use today to transport Video

• Since the "I" in IP stands for "Internet", the Internet can (potentially) be used to transport Video over IP.

• However, not all Video over IP protocols are suitable for transporting Video on the Internet because: The Internet drops packets

Video over IP is compressed and needs every bit Video over IP cannot take packet drops The Video over IP protocol has to handle this issue

COBALT

So, where are packets really lost?

Router

What is an "acceptable" packet loss? Video compression works by removing redundancy from the

- content
- - to you

COBALT

- Every bit of compressed video is very important • There is a simple way to look at the effect of packet loss: - Assume that every packet that is dropped by the network causes a noticeable glitch in the video A block of packets dropped together causes one glitch - Decide how many glitches per (day/hour/minute) is acceptable

Assume a 4 Mb/s stream, with 1316-byte packets

Dropping

10

In order to achieve reliable operation on the Internet, a network protocol is needed to "recover" in some way the packets that have been lost.

Some numbers

Jone packet in	Produces
1,000	2.6
10,000	26
00,000	4 minute
000,000	44
,000,000	7 hours

- a glitch every
- seconds
- seconds
- es 23 seconds
- minutes
- s 19 minutes

• SMPTE-2022 FEC information Retransmission (ARQ)

Protocols Considered

- Transmit redundant information with the packets - Losses may be recovered from received packets and redundant

- If a packet is lost, receiver will request a retransmission

• Basic idea: - Transmit the video using RTP - Transmit "extra" FEC packets

RTP plus SMPTE-2022 FEC

That gets you timestamps and sequence numbers Sequence numbers let you know when packets were dropped - If packets are lost in the network, it may be possible to rebuild them from the received packets and FEC packets: For each N packets send 1 FEC packets If there is one loss in this set of N+1 packets, it can be corrected - Use a matrix arrangement to deal with burst losses

Columns	Rows	Recovery Capability	Overhead	Latency @ 2 Mb/s	Latency @ 10 Mb/s
5	5	5 pkts every 25	20%	263 ms	53 ms
10	5	10 pkts every 50	20%	526 ms	105 ms
20	5	20 pkts every 100	20%	1052 ms	211 ms
10	10	10 pkts every 100	10%	1052 ms	211 ms

Some FEC Numbers

- ARQ stands for: Automatic Repeat reQuest - Automatic Repeat Query

ARO

• This is the generic name for a number of retransmission strategies in the face of packet loss - Standard TCP uses a couple of ARQ variants • In video transmission, the most useful variant is "Selective Retransmission" (NACK-based) - If you don't hear from me, everything is OK - If I miss anything, I let you know and you resend just that

Transmitted packets are saved for possible retransmission

- less)
- May be acceptable for some forms of live contribution How do these two protocols compare? - Statistical models
- Testing on a simulated network
 - Measurement data

Comparison of FEC and ARQ FEC and ARQ have "decent" latency (typically 1 second or

PSHOWCASE^M THEATER A little probability and statistics...

- Assume independent loss probability for each transmitted packet (binomial distribution)
- Calculate the rate of packets still lost *after* correction with statistical analysis
- This allows us to theoretically compare the performance of the various protocols and settings
- Our variables are:

 \mathbf{R}

R = number of requests (ARQ) N = number of packets per row (FEC) M = number of packets per column (FEC)

lon		Pe
r Correct	00.000000000	
ntage(p _c) afte	0.010000000	
Loss Percer	0.0000010000	
Residual Packet		0.1

lo		Perce
Correct	00.000000000	
e(p _c) after	0.010000000	
Loss Percentage	0.0000010000	
dual Packet	0.000000001	
Resi		0.1

- Windows-based network simulator custom-built for this test
- Random drops, random burst drop size
- Test scenario:

- End-to-end real-time video - Select max burst loss
- Increase loss percentage until video is "not watchable" (subjective)

Network Simulator

IP SHOWCASE THEATER AT NAB – APRIL 8-11, 2019

Network Simulator

Simulator Results

Measured Packet Loss Upper Bound

Field Test Data

- Locations:
- Santa Clara, CA
- Champaign, IL
- ISP: Comcast
- Network Round Trip Time: 75 ms
- Number of hops: 12
- Target bit rate: 3 Mb/s
- Equipment:
 - 9223 Encoder
 - 9990-DEC Decoder

PSHOWCASE^M **THEATER**

Monitoring Ad	min Control
Decoder IP Outpu	its ASI Output
Product Networ	k ASI Input
Received Rate (b/s)	2,982,106
Protocol	RTP
Stream Source IP Address	192.168.129.10
Current Source	Primary
SMPTE 2022 FEC	Row and Column
Columns	20
Rows	5
Received Packets	67185790
Lost Packets	10463
Recovered Packets	8670
Unrecovered Packets	1793
Invalid FEC Packets	0
Status Network	Configuration

COBALT

RTP/SMPTE-2022 Test Data

Parameters: 20x5 matrix, row and column **Test Duration** Test Start Date Network Packet Loss Corrected Packet Loss **Correction Ratio** Bandwidth Overhead Network Glitch Interval Corrected Glitch Interval Protocol Latency

IP SHOWCASE THEATER AT NAB – APRIL 8-11, 2019

65 hours 05/19/17, 3:50PM 0.0158% 0.0027% 83% 25% 1 minute 13 seconds 7 minutes 12 seconds 702 ms

DSHOWCASE THEATER

Monitoring	Ad	min	Control
Decoder	IP Outpu	uts	ASI Output
Product	Netwo	rk	ASI Input
Received	Rate (b/s)	2,943,8	07
	Protocol	RTP	
Stream Source I	P Address	192.168	.129.10
Curre	ent Source	Primary	
Receive	d Packets	1734903	315
Los	st Packets	44606	
Recovere	d Packets	44471	
Unrecovere	d Packets	135	
NA	CKs Sent	16248	
Lat	e Packets	0	
Duplicat	e Packets	2614	
Status	letwork	Conf	iguration

RTP/ARQ Test Data

Parameters: up to 4 retries allowed

Test Duration Test Start Date Network Packet Loss Corrected Packet Loss **Correction Ratio** Bandwidth Overhead Network Glitch Interval Corrected Glitch Interval Protocol Latency

IP SHOWCASE THEATER AT NAB – APRIL 8-11, 2019

169 hours 05/24/17, 12:30PM 0.0257% 0.000078% 99.7% 0.027% 46 seconds 4 hours 7 minutes 400 ms

Scaling: Latency - ARQ latency is constant - FEC latency decreases with increasing bit rate Overhead - ARQ overhead will increase with packet loss - FEC overhead is constant

FEC/ARQ Comparison

Paran Netwo Loss Correc LOSS Correo Band Overh Netwo Interva Correc Interva Protoc

neter	2022 FEC	ARQ
ork Packet	0.0158%	0.025
cted Packet	0.0027%	0.00007
ction Ratio	83%	99
vidth ead	25%	0.02
ork Glitch al	1 minute 13 seconds	46 seco
cted Glitch	7 minutes	4 hou
2	12 seconds	minu
col Latency	702 ms	400

- over the Internet

ARQ Standardization Status • The Video Services Forum (VSF) started a group around NAB 2017 to standardize a low-latency video transport protocol

• **RIST: Reliable Internet Stream Transport** ARQ has been selected as the base protocol VSF TR-06-1 was published October 2018

Thank You

Ciro A. Noronha, Ph.D. **Cobalt Digital** ciro.noronha@cobaltdigital.com +1 650 208-0605

